Sugaroid
Release v0.15.2

Srevin Saju, The Sugaroid Project

Jan 31, 2021

CONTENTS:

1 Introduction 1
1.1 Sugaroid L e e e e e e e e 1
1.2 Configuration L e e e e e e e e e e e e e 2
1.3 Databases and Training oL e e e e 2
LA DatasetS v v vt e e e e e e e e e e e e e e e e e 4
1.5 Faults e e 5
1.6 EXecution e e e e e 5
1.7 Dependencies e e e e 5
1.8 Requirements oL e e e e e e e 6
1.9 Acknowledgements e e e e e e e e e e e e e e 7
1.10 Bibliography e e e e e e e e 7
2 sugaroid 9
2.1 launchermodule L e 9
2.2 setupmodule . .o L e e e e e e e e e e 10
23 sugaroidpackage e e e e 10
3 Indices and tables 17
Python Module Index 19
Index 21

CHAPTER
ONE

INTRODUCTION

Fig. 1: Sugaroid smiling

1.1 Sugaroid

@® BECOME A PATRON

IMPORTANT : Sugaroid is an open source software. The web server is deployed on Microsoft Azure.
Your support for this open source software is highly necessary to make this project continued to be served
on the world wide web. Consider being my patron to help Sugaroid host its servers or if you are willing
to lend servers for Sugaroid, press the sponsor button and email me. Thanks. However, Sugaroid will
always remain free forever :smile:

https://www.patreon.com/srevinsaju?fan_landing=true

Sugaroid, Release v0.15.2

1.1.1 Introduction

Sugaroid is a new Artificial Intelligence which uses Natural Language Processing (NLP) with Machine Learning and
neural networks to manipulate user input to provide a intuitive response. The Al is built on Python 3.8.2 and was
built out of personal interest, to tackle three important issues in the Python framework

* Natural Language Processing / Machine Learning
* Graphical User Interface
* Database Management, Configuration file management and Web Development

Sugaroid Chatbot has a comprehensive and modular interface utilizing Object Oriented Programming to benefit ac-
tivities of Sugarlabs, a non-profit educational organization. Initially built to serve as a companion bot, the Sugaroid
Virtual Assistant helps to comprehend most of the messages, to generate a probable response. The future plans of
sugaroid aims to extend Sugaroid as a documentation reader of which beta previews are still under testing.

The Sugaroid bot is deployed in production servers particularly for testing.
* The web interface
* The discord bot

¢ IRC bot hosted on self when necessary

1.2 Configuration

Sugaroid saves some data to your PC. The path where sugaroid saves the data is ~/.config/sugaroid on
Linux and Mac OS, but on Windows itis in C: \Users\<username>\AppData\sugaroid\

This is the training database used my sugaroid to answer your questions. Particularly related to sugaroid brain, the
files are sugaroid.db and sugaroid.trainer. json

* sugaroid.db: The Sugaroid bot uses SQL1ite toread data from a persistent database. Remove sugaroid.
db will reset sugaroid’s brain, and a fresh database will be created from scratch

* sugaroid.trainer. json : Is a JavaScript Object Notation file which stores trained responses in order to
reset or retrain them whenever there is a necessity. This file may or may not be present in end user’s systems
and depends solely on the type of release dev or stable

* sugaroid_internal.db: A training dataset which learns from user input and accordingly saves them with
low confidence. This data is later used to train sugaroid in future according to probability datasets

There might also be additional files in the configuration directory. These are Audio files, In the case that the audio
keyword is passed as an argument, it creates samples of audio files downloaded from the Google server to serve TTS
(Text to Speech) to the end user.

1.3 Databases and Training

Sugaroid uses an sqlite3-type database for portability. All the responses are explicitly saved and trained on sug-
aroid. Sugaroid has two types of training: 1. Supervised training 2. Unsupervised training

2 Chapter 1. Introduction

https://www.sugarlabs.org
https://sed.lol/sugaroid
https://cloud.google.com/text-to-speech
https://cloud.google.com/text-to-speech

Sugaroid, Release v0.15.2

1.3.1 Supervised training

Supervised training is a list of proper responses, most commonly collected from the Stanford Question Answering
Dataset (Natural) (SQuAD 2.0 from Stanford NLP, attribution to Rajpurkar & Jia et al. ’18). Other reponses are manu-
ally trained from interactions during testing. All the responses are saved to ~/ .config/sugaroid/sugaroid.
db which is opened in read-only mode during production mode to prevent people from tampering with the dataset. At
local testing, it is possible to teach sugaroid a sequel of responses and this will appended to the SQL database. Using
Naive Bayers algorithm.

1.3.2 Unsupervised Training

Unsupervised training are a community collected dataset. The sources of data, are obviously from the com-
munity, on its hosted sugaroid.srevinsaju.me instance on Microsoft Azure, frontend on AWS. This data are also
appended to the SQL database like Supervised Training but they are saved with lesser confidence (0.1 =
confidence_from_statement), as data from community needs to undergo refining.

1.3.3 sqlite3

Sugaroid’s backend module is sgqlite3 against the conventional MySQL or MariaDB adapters. sglite3 was
chosen considering its portability alone. Despite higher IO operations on sglite3, community data collection
becomes easier because sqlite3 databases are more or less, a single file. Another problem it solves is the different
ways in which the operating systems consider the file path to be. Using sglite3 helps to keep consistency in case.
(For Windows, mysql is case insensitive, but on GNU/Linux/UNIX its case sensitive). Using sglite3 solves that
problem.

1.3.4 Privacy policy

Sugaroid collects data from its users which are then used to train. This is done through cookies, on the first response
you provide to sugaroid (on the web interface), on adding the bot to your discord channel (on the Discord adapter).
However, your data is completely safe, and is not collected for training purposes if its (i) self hosted (ii) run as a desktop
/ command line app. All data on the desktop version is still appended to your respective configuration folders, which
is, for example, on Linux, ~/.config/sugaroid/sugaroid.db and on Windows its C: \Users\foobar\
AppDatal\Local\sugaroid\sugaroid.db.

Note: AppData folder is normally hidden on Windows, manually “Show all hidden folders” to see the
AppData folder.

1.3.5 Investigating data from the database

There are certain cases when you would like to analyze the data stored in the database, or you would like to do some
debugging. In all such cases, the path to the sugaroid.db is very much useful. All you need is an sglite3
binary, which is available for all platforms.

Download sglite3 from here

And then, start investigating by

$ sglite3 ~/.config/sugaroid/sugaroid.db

This will open a prompt, where you can enter most commands;

1.3. Databases and Training 3

https://rajpurkar.github.io/SQuAD-explorer/
https://sugaroid.srevinsaju.me
https://www.sqlite.org

Sugaroid, Release v0.15.2

Apart from the main database, sugaroid also stores data in * ~/.config/sugaroid/sugaroid.db * ~/.
config/sugaroid/sugaroid.trainer. json * ~/.config/sugaroid/sugaroid_internal.db
* ~/.config/sugaroid/data. json

Along with SQL, we have also used JSON type files for configuration alone.

1.4 Datasets

Sugaroid’s brains lies in its datasets. It might not make sense and can possibly give wrong replies if its not trained
with the default dataset. Its more like “Artificially Foolish” without a dataset.

1.4.1 Prebuilt datasets

Sugaroid uses a few well known datasets which helps to increase the accuracy of natural language processing. These
are provided and fetched by n1tk and spacy, which are popular natural language processing libraries used in Python.

A list of datasets include * averaged_perceptron_tagger * punkt * vader_lexicon
Some of the corpora used by sugaroid are * stopwords corpus * wordnet corpus

What is corpus? Corpus is a text file which contains useful information which can be precisely extracted
to get useful information. stopwords are words which are commonly used in English speech. Most of
the time, st opwords do not contain important meanings of the statement to the bot. stopwords give
meaning to robots. Some examples of stopword are 1 f, on, is, are, etc.

Wordnet

Wordnet is a collection of arrays of words which have a unique lemma. Some words may be used as an exaggeration,
or sometimes, the same word is used in superlative, comparative tones. At many times, its very useful to ignore such
words and depend on the lemma (aka root word). Wordnet is a very interesting library that helps to make things
simpler.

Vader Lexicon

Vader Lexicon is a zipped sentiment analyzer which contains many statements with vector scores of a respective words.
A resultant vector product is take to find out the approximate sentiment polar score (positive or negative statment).
However trained, Vader Lexicon is not very accurate its terms, but however, it remains one of the best datasets used in
sugaroid!

Punkt

Punkt is a punctuation library used by Sugar to understand mood of a statement, i.e., interrogative mood, imperative
mood, negation, etc.

4 Chapter 1. Introduction

Sugaroid, Release v0.15.2

1.5 Faults

1.5.1 Invalid Responses

Sometimes, the similarity algorithms may give a completely incorrect answer that may lead to false response by the bot
to the user. This is because tensors have no resultant displacement and has multiple direction. To compute zero vectors,
SpaCy uses an approximation algorithm called Word Mover Distance. This might lead to unknown predictions. Such
predictions should be raised as an issue on the Sugaroid repository to create a tackler adapter that would override the
answer with a suitable confidence value.

The other complex and efficient algorithms have been neglected. This is to reduce the size of the distribution as well
as reduce the time of installation on an end-user’s PC. Complex and accurate Natural Language Processing systems
like pytorch and tensorflow exists, but this may result in the net user installation size to be approximately 2 GB
+, which is probably not what the end-user requires.

1.6 Execution

Running sugaroid is easy as pie

Just execute

$ sugaroid

from the Terminal (Linux, Mac OS) and PowerShell (on Windows)

There are few arguments that can be passed to sugaroid

gt : Running sugaroid qt will start the sugaroid graphical user interface

audio : Running sugaroid audio will include audio support for sugaroid (Data charges may apply)

train: Running sugaroid train will start the sugaroid trainer, which you can use to train sugaroid for some responses

update : Running sugaroid update will clear the current database and train the new data and store it persistently to
the configuration path as sugaroid.db . (See Configuration for more details)

To launch the sugaroid web server on any IP address, do a local clone of the package by

git clone https://github.com/srevinsaju/sugaroid-wsgi —--depth=1
cd sugaroid-wsgi
python manage.py runserver

Follow the on-screen instructions to get it running on your web browser. If the command completed with a status OK,
you should be able to see sugaroid running on http://0.0.0.0:8000

1.7 Dependencies

There are certain requirements which are necessary for the proper functioning of Sugaroid chat bot.
 wikipedia-API - Handles Wikipedia based questions
¢ newsapi-python - Provides news headlines

* chatterbot - Gives basic logic to Sugaroid

1.5. Faults 5

http://0.0.0.0:8000

Sugaroid, Release v0.15.2

1.8

https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-

2.3.1.tar.gz - Models used for Language Processing
pyspellchecker - Checks spellings to give appropriate results
spacy - A language processor

python-dotenv

nltk - Another Language Processing platform

chatterbot - Used for training Sugaroid

colorama - Prints coloured text

freegames - Collection of free games

requests - Creates HTTP requests

Ixml - Handles HTML and XML files

beautifulsoup4 - Gets data from other webpages
django-googlesearch - A custom google search engine in Django
googletrans - Translates text

akinator.py - Plays a game of Akinator with the user

emoji - Allows emoji printing

pyinflect - Adds word inflections

currencyconverter - Used to convert currencies

Requirements

1.8.1 Hardware Requirements

CPU: AMD/Intel Processor with minimum CPU Frequency, 600 MHz
Memory: RAM/Swap: 1024 MB or greater
Internet: For installation, optionally, fetching results from Wikipedia

Microphone: (Optional), for speech recognition

1.8.2 Software Requirements

Linux / BSD / Darwin / Windows
Python 3.8 (recommended, any version greater than 3.6)

pip, preferably on PATH

Chapter 1

. Introduction

Sugaroid, Release v0.15.2

1.9 Acknowledgements

Sugaroid AI has become possible to millions of open source developers. Particularly to mention, I would like to
thank @GuntherCox for the chatterbot library and @explosion for spaCy , the machine learning library with
which it was possible to make natural language processing easy as pie. Also, the millions of word collection on
en_core_web_sm, en_core_web_md was contributed by developers across the globe for translation and lin-
guistic differentiation. Special thanks to contributors, Sreya Saju (aka @sreyasaju) and Joel Anil Chacko (aka
@TheDarkDrake) for helping me document the missed parts, bug triaging and adding more responses, I would also
like to thank, Sugar Labs 2019 GCI Team, Sashreek Magan (aka @smag), Andrea Gonzales (aka @andreagon),
Zakiyah Hasanah (aka @kiy4h), Rishikesh Joshi (aka @Creatune), Szymon (aka @sdziuda) and Marcus Chong
(aka @pidddgy) for continuous testing on servers and reporting bugs. It is only possible to rectify bugs with the help
of repeated testing. I would also like to thank friends and family who also helped me to work on this project. Along
with this, I would like to extend gratitude to Microsoft for sponsoring Sugaroid’s hosting on Azure.

1.10 Bibliography

1. Jensen Shannon divergence, Wikipedia, the Free Encyclopedia (en), available on web:
 wiki: https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence

2. Naive Bayes Classifier, Wikipedia, the Free Encyclopedia (en), available on web:

» wiki: https://en.wikipedia.org/wiki/Naive_Bayes_classifier

3. Chatterbot, Machine learning, converstional bot, Gunthercox, et. al., available on web: https://chatterbot.
readthedocs.io/en/stable/

4. Google Speech Recognition for Python, PyPI: Python Packaging Index, et. al, available on web:
* repository: https://pypi.org/project/SpeechRecognition

5. spaCy - Industrial-strength Natural Language Processing, explosion.io, et. al, available on web:
* website: https://spacy.io/,
* source code: GitHub

6. Stanford Question Answer Dataset, Rajpurkar, Pranav, et. al, available on web:

* research paper: https://arxiv.org/abs/1806.03822

1.9. Acknowledgements 7

https://github.com/gunthercox
https://explosion.ai
https://github.com/explosion/spaCy
https://github.com/sreyasaju
https://github.com/TheDarkDrake
https://github.com/smag
https://github.com/AndreaGon
https://github.com/Kiy4h
https://github.com/Creatune
https://github.com/sdziuda
https://github.com/pidddgy
https://sugaroid.srevinsaju.me
https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://chatterbot.readthedocs.io/en/stable/
https://chatterbot.readthedocs.io/en/stable/
https://pypi.org/project/SpeechRecognition/
https://spacy.io/
https://github.com/explosion/spaCy
https://arxiv.org/abs/1806.03822

Sugaroid, Release v0.15.2

8 Chapter 1. Introduction

CHAPTER
TWO

SUGAROID

2.1 launcher module

Create a new Mock object. Mock takes several optional arguments that specify the behaviour of the Mock object:

* spec: This can be either a list of strings or an existing object (a class or instance) that acts as the specification for
the mock object. If you pass in an object then a list of strings is formed by calling dir on the object (excluding
unsupported magic attributes and methods). Accessing any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then mock.__class__ returns the class of the spec object. This
allows mocks to pass isinstance tests.

* spec_set: A stricter variant of spec. If used, attempting to set or get an attribute on the mock that isn’t on the
object passed as spec_set will raise an AttributeError.

* side_effect: A function to be called whenever the Mock is called. See the side_effect attribute. Useful for raising
exceptions or dynamically changing return values. The function is called with the same arguments as the mock,
and unless it returns DEFAULT, the return value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In this case the exception will be raised when
the mock is called.

If side_effect is an iterable then each call to the mock will return the next value from the iterable. If any of the
members of the iterable are exceptions they will be raised instead of returned.

* return_value: The value returned when the mock is called. By default this is a new Mock (created on first
access). See the return_value attribute.

* wraps: Item for the mock object to wrap. If wraps is not None then calling the Mock will pass the call through
to the wrapped object (returning the real result). Attribute access on the mock will return a Mock object that
wraps the corresponding attribute of the wrapped object (so attempting to access an attribute that doesn’t exist
will raise an AttributeError).

If the mock has an explicit return_value set then calls are not passed to the wrapped object and the return_value
is returned instead.

* name: If the mock has a name then it will be used in the repr of the mock. This can be useful for debugging.
The name is propagated to child mocks.

Mocks can also be called with arbitrary keyword arguments. These will be used to set attributes on the mock after it is
created.

Sugaroid, Release v0.15.2

2.2

setup module

Create a new Mock object. Mock takes several optional arguments that specify the behaviour of the Mock object:

spec: This can be either a list of strings or an existing object (a class or instance) that acts as the specification for
the mock object. If you pass in an object then a list of strings is formed by calling dir on the object (excluding
unsupported magic attributes and methods). Accessing any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then mock.__class__ returns the class of the spec object. This
allows mocks to pass isinstance tests.

spec_set: A stricter variant of spec. If used, attempting to ser or get an attribute on the mock that isn’t on the
object passed as spec_set will raise an AttributeError.

side_effect: A function to be called whenever the Mock is called. See the side_effect attribute. Useful for raising
exceptions or dynamically changing return values. The function is called with the same arguments as the mock,
and unless it returns DEFAULT, the return value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In this case the exception will be raised when
the mock is called.

If side_effect is an iterable then each call to the mock will return the next value from the iterable. If any of the
members of the iterable are exceptions they will be raised instead of returned.

return_value: The value returned when the mock is called. By default this is a new Mock (created on first
access). See the return_value attribute.

wraps: Item for the mock object to wrap. If wraps is not None then calling the Mock will pass the call through
to the wrapped object (returning the real result). Attribute access on the mock will return a Mock object that
wraps the corresponding attribute of the wrapped object (so attempting to access an attribute that doesn’t exist
will raise an AttributeError).

If the mock has an explicit return_value set then calls are not passed to the wrapped object and the return_value
is returned instead.

name: If the mock has a name then it will be used in the repr of the mock. This can be useful for debugging.
The name is propagated to child mocks.

Mocks can also be called with arbitrary keyword arguments. These will be used to set attributes on the mock after it is
created.

2.3

sugaroid package

2.3.1 Subpackages

sugaroid.backend package

Submodules

sugaroid.backend.sql module

Module contents

sugaroid.brain package

10

Chapter 2. sugaroid

Sugaroid, Release v0.15.2

Submodules
sugaroid.brain.about module
sugaroid.brain.aki module
sugaroid.brain.areyou module
sugaroid.brain.assertive module
sugaroid.brain.because module
sugaroid.brain.brain module
sugaroid.brain.bye module
sugaroid.brain.canmay module
sugaroid.brain.constants module
sugaroid.brain.convert module
sugaroid.brain.covid module
sugaroid.brain.debug module
sugaroid.brain.dis module
sugaroid.brain.do module
sugaroid.brain.dolike module
sugaroid.brain.either module
sugaroid.brain.emotion module
sugaroid.brain.feel module
sugaroid.brain.fun module
sugaroid.brain.hangman module
sugaroid.brain.iam module

sugaroid.brain.idk module

2.3. sugaroid package

11

Sugaroid, Release v0.15.2

sugaroid.brain.imitate module
sugaroid.brain.interrupt module
sugaroid.brain.joke module
sugaroid.brain.learn module
sugaroid.brain.let module
sugaroid.brain.myname module
sugaroid.brain.news module
sugaroid.brain.ok module
sugaroid.brain.oneword module
sugaroid.brain.ooo module
sugaroid.brain.play module
sugaroid.brain.postprocessor module
sugaroid.brain.preprocessors module
sugaroid.brain.reader module
sugaroid.brain.rereversei module
sugaroid.brain.reset module
sugaroid.brain.reset_trivia module
sugaroid.brain.reversethink module
sugaroid.brain.swaglyrics module
sugaroid.brain.time module
sugaroid.brain.trivia module
sugaroid.brain.twoword module

sugaroid.brain.update module

12

Chapter 2. sugaroid

Sugaroid, Release v0.15.2

sugaroid.brain.utils module
sugaroid.brain.waitwhat module
sugaroid.brain.whatamidoing module
sugaroid.brain.whatwhat module
sugaroid.brain.whoami module
sugaroid.brain.why module
sugaroid.brain.wiki module
sugaroid.brain.wolfalpha module
sugaroid.brain.yesno module

Module contents

sugaroid.cli package

Submodules
sugaroid.cli.cli module
Module contents

sugaroid.config package

Submodules
sugaroid.config.config module
Module contents

sugaroid.game package

Submodules
sugaroid.game.game module
Module contents

sugaroid.google package

2.3. sugaroid package 13

Sugaroid, Release v0.15.2

Submodules
sugaroid.google.google module
Module contents

sugaroid.gui package

Submodules
sugaroid.gui.ux module
Module contents

sugaroid.platform package

Submodules
sugaroid.platform.darwin module
sugaroid.platform.linux module
sugaroid.platform.platform module
sugaroid.platform.windows module
Module contents

sugaroid.reader package

Submodules
sugaroid.reader.markdown module
sugaroid.reader.reader module
sugaroid.reader.rst module
sugaroid.reader.scrawled module
Module contents

sugaroid.trainer package

Submodules

14

Chapter 2. sugaroid

Sugaroid, Release v0.15.2

sugaroid.trainer.squad_trainer module
sugaroid.trainer.trainer module
Module contents

sugaroid.translator package

Submodules
sugaroid.translator.translate module
Module contents

sugaroid.trivia package

Submodules
sugaroid.trivia.trivia module
sugaroid.trivia.triviadb module
Module contents

sugaroid.tts package

Submodules

sugaroid.tts.mic module
sugaroid.tts.tts module

Module contents

2.3.2 Submodules

2.3.3 sugaroid.sugaroid module
2.3.4 sugaroid.train module
2.3.5 sugaroid.version module

2.3.6 Module contents

2.3. sugaroid package

15

Sugaroid, Release v0.15.2

16 Chapter 2. sugaroid

CHAPTER
THREE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

17

Sugaroid, Release v0.15.2

18 Chapter 3. Indices and tables

PYTHON MODULE INDEX

launcher, 9

S
setup, 10

19

Sugaroid, Release v0.15.2

20 Python Module Index

L

launcher
module, 9

M

module
launcher, 9
setup, 10

S

setup
module, 10

INDEX

21

	Introduction
	Sugaroid
	Configuration
	Databases and Training
	Datasets
	Faults
	Execution
	Dependencies
	Requirements
	Acknowledgements
	Bibliography

	sugaroid
	launcher module
	setup module
	sugaroid package

	Indices and tables
	Python Module Index
	Index

